Tenascin-C contains domains that independently regulate neurite outgrowth and neurite guidance.

نویسندگان

  • S Meiners
  • M L Mercado
  • M S Nur-e-Kamal
  • H M Geller
چکیده

Tenascin-C has been implicated in regulation of both neurite outgrowth and neurite guidance. We have shown previously that a particular region of tenascin-C has powerful neurite outgrowth-promoting actions in vitro. This region consists of the alternatively spliced fibronectin type-III (FN-III) repeats A-D and is abbreviated fnA-D. The purpose of this study was to investigate whether fnA-D also provides neurite guidance cues and whether the same or different sequences mediate outgrowth and guidance. We developed an assay to quantify neurite behavior at sharp substrate boundaries and found that neurites demonstrated a strong preference for fnA-D when given a choice at a poly-L-lysine-fnA-D interface, even when fnA-D was intermingled with otherwise repellant molecules. Furthermore, neurites preferred cells that overexpressed the largest but not the smallest tenascin-C splice variant when given a choice between control cells and cells transfected with tenascin-C. The permissive guidance cues of large tenascin-C expressed by cells were mapped to fnA-D. Using a combination of recombinant proteins corresponding to specific alternatively spliced FN-III domains and monoclonal antibodies against neurite outgrowth-promoting sites, we demonstrated that neurite outgrowth and guidance were facilitated by distinct sequences within fnA-D. Hence, neurite outgrowth and neurite guidance mediated by the alternatively spliced region of tenascin-C are separable events that can be independently regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long and short splice variants of human tenascin differentially regulate neurite outgrowth.

Tenascin-C has been implicated in regulation of neurite outgrowth both during development and after injury; however, its role as permissive vs inhibitory remains controversial. We report that different tenascin splice variants may have dramatically different impacts on neuronal growth. In a cell culture model, the largest and smallest splice variants (TN.L and TN.S) of human tenascin both promo...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth.

We used a new approach to identify domains of chicken tenascin-C required for interaction with cells. Instead of expressing the parts of interest, we deleted them from an otherwise intact tenascin-C molecule and scored for the concomitant change in activity. As a starting point for all mutant constructs we expressed the smallest naturally occurring tenascin-C splice variant in vertebrate cells....

متن کامل

J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth

The influence of J1/tenascin adsorbed to polyornithine-conditioned plastic (substrate-bound J1/tenascin) and J1/tenascin present in the culture medium (soluble J1/tenascin) on neurite outgrowth was studied with cultured single cells from hippocampus and mesencephalon of embryonic rats. Neurons at low density grew well on J1/tenascin substrates and extended neurites that were approximately 40% l...

متن کامل

Tenascin-C contains distinct adhesive, anti-adhesive, and neurite outgrowth promoting sites for neurons

The glia-derived extracellular matrix glycoprotein tenascin-C (TN-C) is transiently expressed in the developing CNS and may mediate neuron-glia interactions. Perturbation experiments with specific monoclonal antibodies suggested that TN-C functions for neural cells are encoded by distinct sites of the glycoprotein (Faissner, A., A. Scholze, and B. Götz. 1994. Tenascin glycoproteins in developin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 19  شماره 

صفحات  -

تاریخ انتشار 1999